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ABSTRACT
We computationally investigate the ability of a cycloidal tur-

bine to cancel two-dimensional non-harmonic waves in deep wa-
ter. A cycloidal turbine employs the same geometry as the well
established Cycloidal or Voith-Schneider Propeller. It consists of
a shaft and one or more hydrofoils that are attached eccentrically
to the main shaft and can be independently adjusted in pitch an-
gle as the cycloidal turbine rotates. We simulate the cycloidal
turbine interaction with incoming waves by viewing the turbine
as a wave generator superimposed with the incoming flow. The
generated waves ideally are 180◦ out of phase and cancel the in-
coming wave downstream of the turbine. The upstream wave is
very small as generation of single-sided waves is a characteristic
of the cycloidal turbine as has been shown in prior work. The
superposition of the incoming wave and generated wave is in-
vestigated in the far-field and we model the hydrofoil as a point
vortex. This model has previously been used to successfully ter-
minate regular deep water waves as well as intermediate depth
water waves. We explore the ability of this model to cancel non-
harmonic waves. Near complete cancellation is possible for a
non-harmonic wave with components designed to match those

generated by the cycloidal turbine for specified parameters. Can-
cellation of a specific wave component of a multi-component
system is also shown. Also, step changes in the device oper-
ating parameters of circulation strength, rotation rate, and sub-
mergence depth are explored to give insight to the cycloidal tur-
bine response characteristics and adaptability to changes in in-
coming waves. Based on these studies a linear, time-invarient
(LTI) model is developed which captures the steady state wave
frequency response. Such a model can be used for control de-
velopment in future efforts to efficiently cancel more complex
incoming waves.

NOMENCLATURE
T Wave Period [s]
D Water Depth [m]
H Wave Height [m]
C Wave Travel Velocity (Celerity) [m/s]
Cg Wave Group Velocity [m/s]
k Wave Number [1/m]
g Gravity constant, 9.81[m/s2]
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t Time [s]
λ Wavelength [m]
R Wave Energy Converter Radius [m]
xc,yc Wave Energy Converter Shaft location [m]
φ Flow Potential [m2/s]
η Water Surface [m]
Γ Vortex or Hydrofoil Circulation [m2/s]
δ (t) Main Shaft rotational angle [deg]
θ Feedback phase [deg]
F(z, t) = φ + iψ Complex Stream Function
σ Phase angle

INTRODUCTION
Ocean wave energy is one of the most abundant sources

of renewable energy on Earth. The field of ocean wave energy
extraction has gained considerable interest within the past
several years due to the increasing need for greater renewable
energy generation. Various device designs exist which attempt
to harness this energy. These devices generally rely on water
pressure acting over large surface areas to cause relative motion
within the design from which the power is derived. The
cycloidal turbine wave energy extraction concept on the other
hand interacts with waves by using lift. This device design
consists of a main shaft capped at the ends by two discs. One
or more hydrofoils attached eccentrically from the main shaft
by the discs and can be adjusted independently in pitch angle.
The whole device is submerged in the water and oriented such
that the main shaft aligns with the crests of incoming waves as
seen in Figure 1. The hydrofoils act as wings moving through
the wave velocity field at orbital motion speeds and hence can
generate large forces for a comparatively small size [1].

The concept of the cycloidal turbine wave energy converter
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FIGURE 1. Cycloidal wave energy converter geometry.

is to synchronize rotation of the device to the frequency of the

incoming waves. When synchronization occurs the flow around
the hydrofoil generates a lift force on the hydrofoils and that
force produces a torque which continues the rotation. Early
initial work in this area was carried out at TU Delft by Hermans,
van Sabben, and Pinkster [2]. They carried out experiments
using a single hydrofoil ‘rotating wing’ attached to a submerged
horizontal shaft. Testing in regular waves showed that weights
could be lifted by using the rotating shaft as a winch. Their
work also developed a theory to model the generation of waves
by this device based on two-dimensional linear potential theory.
An important conclusion was that waves are generated “down
stream” only. The direction of the generated waves corresponds
with the direction of motion of the foil when at the highest point
of its rotation [3].

More recently computational and experimental work has
been done at the US Air Force Academy to further characterize
the wave generation from a rotating hydrofoil. Computational
work to explore the use of the cycloidal turbine as a wave
generator as well as a wave terminator has been conducted [4,5].
As expected, single-sided waves were generated and the wave
direction was controlled by the hydrofoil rotation direction.
The frequency of the generated wave matched the rotation
frequency of the cycloidal turbine. Also as expected was a linear
increase in wave amplitude with circulation strength. Physically,
circulation strength is related to the pitch angle of the hydrofoils.
Wave amplitude also increased with a reduction in submergence
depth, though the effect was not proportional and varied between
the various generated wave components.

In general the generated waves were composed of up to
three components, a fundamental Airy type wave and its first
two harmonics. A parameter study of wave energy converter
size was conducted to investigate these components. This study
gives guidance for the amplitude of wave components generated
at a given device radius for a desired generated fundamental
wavelength. A typical result from [4] is shown in Figure 2
for a nine second period. For a wide range of device sizes the
fundamental wave is dominant, however for small values of
non-dimensional device size the first and second harmonics con-
tribute more significantly to the generated wave. One conclusion
of the study was a peak in fundamental wave amplitude occurs
at 2R/λAiry = 1/π . Another interesting conclusion was on the
effect of using two hydrofoils of opposite circulation and placed
180◦ apart. Cancellation of the first harmonic wave was shown
to result. This is a useful device configuration to generate near
sinusoidal waves.

Wave cancellation or termination of deep water and inter-
mediate water waves [5] has been simulated quite successfully
for regular waves. The single-sided wave generation feature
of the cycloidal turbine is well suited for this task. Achieving
cancellation requires the motion of the cycloidal turbine to be
synchronized in frequency and phase locked to the incoming
wave. The circulation of the hydrofoils must be adjusted to
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FIGURE 2. Wave height for different sizes 2R/λ of the cycloidal
turbine located at (yc−R)/λ = 0.03. All waves evaluated at +3λ at
t/T = 30 for a T = 9s wave [4].

produce the same wave amplitude as the incoming wave. The
superposition of the two waves results in a flat water surface
downstream of the cycloidal turbine. The modeling in the
referenced works utilizes potential theory and assumes the
cycloidal turbine does not impede the incoming wave. In this
work we utilize the same model and assumptions to explore
wave cancellation for non-harmonic waves.

Real ocean waves are more complex than simple regular
waves of course. They can usually be described as having
random wave heights and composed of many frequencies. Non-
harmonic waves considered for this work will be superpositions
of multiple sinusoidal waves. We show that with knowledge of
the incoming wave components some portion of the wave can be
terminated by the cycloidal turbine. We also explore how step
changes to the device parameters affects the generated wave.
These results show how responsive the cycloidal turbine can be
to changes in the incoming wave. Results to step changes can
serve as building blocks for future work on a comprehensive
wave estimation and feedback control scheme for cancelling and
ultimately extracting energy efficiently from real ocean waves.

COMPUTATIONS
Mathematical Formulation

We apply linear potential theory to solve for the water sur-
face generated by the rotating hydrofoils. We assume incom-
pressible, inviscid flow in infinite depth water. The fluid velocity

is described by the velocity potential φ(x,y, t) as

ū = ∇φ (1)

The field equation becomes

∇
2
φ = 0 (2)

and allows for superposition. At the linearized free surface we
combine the kinematic and dynamic free surface boundary equa-
tions to get

∂ 2φ

∂ t2 +g
∂φ

∂y
= 0 (3)

The free surface elevation η(x, t) is given by

η =−g
∂φ

∂ t
(4)

The potential for a vortex moving under a free surface which
satisfies the conditions above is given by Wehausen and Laitone
[6]

F(z, t) =
Γ(t)
2πi

ln
(

z− c(t)
z− c̄(t)

)
+

g
πi

∫ t

0

∫
∞

0

Γ(τ)√
gk

e−ik(z−c̄(τ)) sin
[√

gk(t− τ)
]

dkdτ

(5)

where c(t) is the vortex position in the complex plane, c̄(t) is the
complex conjugate, Γ(t) is the vortex circulation, g is gravity,
and k is wave number.

This potential is solved for using the same second order spa-
tial and time marching techniques as in Siegel et. al. [4,5] . Based
on their numerical resolution study, convergence is achieved
for the following values of wave number increment, maximum
wave number, and time discretization increment: k/∆k = 31.6,
kmax/k = 75.9, and T/∆t = 36. These values have been used for
the results in this work. In addition this numerical method has
been compared to the work of the TU Delft group [2] and good
agreement was found between this method and their analytical
and experimental results.

As discussed earlier, the non-harmonic waves considered
in this work are superpositions of regular waves with differing
amplitudes, frequencies, phase angles. Therefore the incoming
wave surface is described as

ηincoming = ∑
i

Aisin(ωit +σi) (6)
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Wave Energy Converter Motion
The positions of the vortices are prescribed in this work. We

determine the vortices’ position through control of the cycloidal
turbine rotation rate and the submergence level. For all cases the
location of the cycloidal turbine is fixed in the x direction. The
location of the main shaft (center of rotation of the vortices) is
denoted yc as shown in Figure 1. The level of submergence is
controlled by this parameter. Therefore the coordinates of the
vortex moving with radius R and angular frequency ωc are

cx(t) = Rcos(ωc t +θ) (7)
cy(t) = yc−Rsin(ωc t +θ) (8)

Here θ is a phase shift that can be used to synchronize the in-
coming wave and the frequency of the cycloidal turbine.

RESULTS
In this section results will be presented with a focus on

nine second period waves. The motivation for this is that the
North Atlantic often features waves of this period [7], so this is
useful from a design perspective. This approach also allows us
to utilize results from the prior cited works by Siegel et.al.

Inverse Problem
As described in past wave generation studies by Siegel et.

al. [4, 5] Fast Fourier Transform analysis has been performed to
obtain the wave component amplitudes and frequencies. Using
this technique we can analyze the steady state portion of any gen-
erated wave. From this information we can construct an incom-
ing inverse wave correctly phase shifted to the generated wave.
Figure 3 demonstrates this process. The top plot shows the free
surface time history at three wavelengths downstream created by
a single vortex. The middle plot shows the constructed input
wave. As shown on the bottom of the figure the superposition of
these two waves results in near complete wave cancellation once
the generated wave reaches steady state.

Cancellation of a Wave Component
Next we show cancellation of one component of an incom-

ing multi-component wave system. For these runs we have
chosen cycloidal turbine parameters of 2R/λAiry = 0.75 and
yc/λAiry = 0.405 and used two vortices of equal but opposite cir-
culation placed 180◦ apart to generate a nearly sinusoidal nine
second, steady state wave. As indicated in Figure 2 only very
small harmonic waves are generated in addition to the funda-
mental wave for this value of non-dimensional radius. Likewise
at this level of submergence depth harmonic waves are minimal.
Figure 4 demonstrates this type of cancellation. The top plot
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FIGURE 3. Water surface time histories at x = +3λ , R = 20.203m,
yc = −24m, Γ = 10m2/s, single vortex wave generation. (Top) Wave
generated of 9 second fundamental period. (Middle) Incoming non-
harmonic wave. (Bottom) Resulting wave.

shows the expected sinusoidal 9 second period generated wave.
The middle plot shows the 9 and 9.9 second period waves which
combine to make up the two-component incoming wave. The
bottom plot shows the resulting superposition of the generated
and incoming wave. Clearly the steady state portion matches that
of the 9.9 second period wave from the middle plot indicating the
9 second wave has been cancelled. We performed many similar
test cases combining a nine second period wave with wave peri-
ods between five and 13 seconds. As expected from a model uti-
lizing superposition we are able to successfully cancel the nine
second wave in all cases. Similarly, superposition allows us to
extrapolate this cancellation of the nine second wave to wave
systems of any number of waves. In these cases the phase shift
between the generated wave and the wave component to cancel
were known in advance.

Response to Change in Cycloidal Turbine Parameters
The above results showed successful wave cancellation for

periodic waves. However, in all likelihood the wave conditions
will change in time requiring a change in the device parameters
to maintain synchronicity. The response of generated waves to
changes in device parameters is unknown. Thus, in this section
we will explore the behavior of the downstream generated waves
to step changes in the device parameters. This investigation will
give insight to the responsiveness of the cycloidal turbine. The
waves generated in this section were all created using the two
vortices configuration.
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FIGURE 4. Water surface time histories at x = +2λ , R = 47.4375m,
yc =−51.2325m, Γ =±10m2/s, double vortex wave generation. (Top)
Sinusoidal generated wave of 9 second period. (Middle) Two compo-
nent wave (green) composed of a 9 second period wave (red) and a 9.9
second period wave (blue). (Bottom) Resulting wave where the 9 second
period wave is cancelled out.

Step Change in Circulation The circulation strength,
Γ is directly related to the generated wave height. Thus we expect
this to be a useful control parameter when adapting to changing
incoming wave amplitudes. In Figure 5 we look at the response
of a nine second period (T = 9s) generated wave to a step change
in the circulation strength. Two results are shown, one for an in-
crease in Γ and one for a decrease. In both cases the step change
occurred after 10 periods (at 90 seconds). As expected the in-
crease and decrease in the steady state wave amplitude is pro-
portional to the change in Γ. It is also of interest to note the
time duration to achieve a steady state after the step change oc-
curs. The presented results are the water surface time history
at two wavelengths downstream. It appears from the figure that
the transient behavior lasts for approximately 50 to 60 seconds
(∼6 periods). If a perfect change in wave amplitude were to oc-
cur the step change in amplitude would occur after a propagation
time of 18 seconds (2 periods). Thus approximately 4 periods are
required to develop a steady state wave following a step change
in Γ for a 9 second period wave.

Step Change in Submergence The level of submer-
gence is another parameter that can be used to control the am-
plitude of the generated wave. Like with the circulation strength
parameter, we investigated the response of a nine second period
generated wave to a step change in the level of submergence.
This is shown in Figure 6. Two plots are displayed for the water
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FIGURE 5. Water surface time histories at x = +2λ , R = 47.4375m,
yc =−51.2325m, double vortex wave generation. Step change in circu-
lation from Γ = ±10m2/s to Γ = ±20m2/s at t = 90s (in blue). Step
change in circulation from Γ =±10m2/s to Γ =±5m2/s at t = 90s (in
red).

surface time history two wavelengths downstream over 20 peri-
ods. Γ and rotation rate are fixed for both cases. The step change
occurs after 10 periods (at 90 seconds). The plot in red is for a
step change increase in the level of submergence and shows the
expected decrease in steady state wave amplitude. The blue plot-
ted line is for a step change reduction in the submergence level
and shows the expected increase in steady state wave amplitude.
In both cases approximately 50 to 60 seconds (∼6 periods) are
required before the generated wave returns to steady state. As
was the case for the step change in circulation runs, 18 seconds
(2 periods) are required for propagation time so approximately
4 periods are required to develop a steady state following a step
change in submergence.

A parameter study was also conducted to determine the gen-
erated wave amplitude dependence on the level of submergence.
Figure 7 shows these results of increasing the submergence to
up to twice the initial submergence. The dependence is non-
linear. The dependence shows lowering the cycloidal turbine
reduces the generated wave height and the reduction decreases
with greater submergence. For the parameters chosen, the gener-
ated wave height is reduced to 20% of the initial wave height for
a doubling of the submergence.

Step Change in Period We now consider a step change
in the period of wave generated or equivalently the frequency
of rotation of the cycloidal turbine. This parameter allows us
to adapt the cycloidal turbine to account for changes in the in-
coming wave frequency. For the results presented here we con-
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FIGURE 6. Water surface time histories at x = +2λ , R = 47.4375m,
Γ =±10m2/s, double vortex wave generation. Step change in submer-
gence from yc =−51.2326m to yc =−76.8487m (red). Step change in
submergence from yc =−76.8487m to yc =−51.2326m (blue).
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FIGURE 7. Generated wave amplitude for varying submergence. Cy-
cloidal turbine parameters are T = 9s, R = 47.4375m, Γ = ±10m2/s,
double vortex wave generation. Max generated wave amplitude A0 =
0.6m for initial submergence level of yc0 =−51.2325m.

sider constant circulation (Γ =±10m2/s), constant submergence
(yc =−51.2325m), and an initial wave generation time of 10 pe-
riods. The generated wave height data is recorded at two wave-
lengths (of a 9 second wave) downstream. For this study we
looked at step change between a 9 second period to a 6, 7, 8, 10,
11, 12, or 13 second period and vice versa. A select representa-
tive set of results are presented here.

Consider an initial wave of 9 second period. Steady state is
reached after ∼ 50 seconds of the startup transients with an am-
plitude of 0.60m. After 10 periods (at 90 seconds) the rotation
rate is step changed to produce either 6 or 13 second periods.
The results are presented in Figure 8. For the case of changing
to 6 second periods the wave appears to reach a steady state am-
plitude of 0.07m after a transient time of 60 seconds. For the
case of changing to 13 second periods the wave appears to reach
a steady state amplitude of 0.72m after a transient time of ∼ 60
to 70 seconds. After the transient period the waves generated
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FIGURE 8. Water surface time histories at x = +2λ , R = 47.4375m,
yc = −51.2325m, Γ = ±10m2/s, double vortex wave generation. Step
change in period from T = 9s to T = 13s (blue) at t = 90s. Step change
in period from T = 9s to T = 6s (red) at t = 90s.

clearly return to near sinusoids with periods of 6 and 13 seconds.
Now consider initial waves of 6 and 13 second periods. Af-

ter 10 periods, the rotation rate is changed to produce a 9 second
period. These results are presented in Figure 9. The red line
shows the initial 6 second wave reaches a steady state amplitude
of 0.07m after a transient period of between 50 to 60 seconds.
The step change occurs at 60 seconds and following an approxi-
mately 50 second transient the 9 second, 0.6m amplitude steady
state wave is reached. For the case of the 13 second initial period
wave (in blue) the steady state amplitude of 0.72m is reached af-
ter ∼ 60 to 70 seconds. The step change occurs at 130 seconds
and again after approximately 50 seconds of transient time the
wave tends toward a 9 second, 0.6m amplitude steady state.

Transient Time and Steady State Amplitude Depen-
dence on Period Transients in the generated wave occur dur-
ing the initial wave generation startup and after the step change.

6

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
Approved for public release; distribution is unlimited.



0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

η 
(m

)

FIGURE 9. Water surface time histories at x = +2λ , R = 47.4375m,
yc = −51.2325m, Γ = ±10m2/s, double vortex wave generation. Step
change in period from T = 13s to T = 9s (blue) at t = 130s. Step change
in period from T = 6s to T = 9s (red) at t = 60s.

A comparison of these two types of transients for the step change
in period runs show they are similar in duration. These transient
times are shown in Table 1. These times are given as a range be-
cause it is unclear at what point between wave peaks that the tran-
sients end and steady state begins. In all cases the water surface
data was taken at x = 253m corresponding to two wavelengths
downstream for a 9 second wave. The values presented in the ta-
ble are the duration of the transient after taking into account the
propagation time of the generated waves. The propagation time
is assumed to be 253m/celerity where celerity is the deepwater
wave speed for the given wave period. The results show that in
general 4 to 5 periods are required following a step change in the
period before steady state is achieved.

Model Formulation
The open loop simulations are a necessary means to de-

veloping a model which accurately captures the steady state
frequency response of the cycloidal turbine. Determining the
model structure (ie linear/non-linear, first/second order, time
varying/invariant, etc.) is the initial step. It is seen by Figure
5 that the cycloidal turbine is linear in prescribed circulation to
output wave height at a given frequency; also, Figures 8-9 show a
non-linear relation in generated wave height and frequency. Thus
a linear time invariant model (LTI) is a wise choice. If the input
u(t) is defined as the prescribed circulation of the single point
vortex and the output y(t) is defined as the measured wave height
at a given location, a LTI black box model is well representative
of the cycloidal turbine at a given operating condition. For ex-

TABLE 1. Wave Generation Properties for R = 47.4375m and yc =
−51.2325m, and transient durations (after accounting for propagation
time).

Gen. Wave Transient Time

T(s) Amp(m) Startup(s) Step Change(s) Periods(T)

6 0.07 23 to 33 23 to 33 ∼3.8 to 4.7

7 0.15 42 to 47 32 to 37 ∼4.6 to 6.7

8 0.30 45 to 50 40 to 50 ∼5.0 to 6.3

9 0.60 32 to 42 37 to 47 ∼3.6 to 5.2

10 0.60 49 to 59 44 to 49 ∼4.4 to 5.9

11 0.61 55 to 65 50 to 60 ∼4.5 to 5.9

12 0.70 56 to 66 51 to 61 ∼4.3 to 5.5

13 0.72 53 to 63 58 to 68 ∼4.1 to 5.2

ample if the input has form,

u(t) = Γsin(ωt),

then for a LTI system the output will take the form

y(t) = λ (ω)sin(ωt +θ(ω)).

Typically linear systems are better represented in the Laplace do-
main as,

Y (s) =
b0 +b1s+ . . .+ sm

a0 +a1s+ . . .+ansn U(s) = G(s)U(s).

The gain and phase of the transfer function (G(s)) are then
defined as |G( jω)| = λ (ω)

Γ
and ∠G( jω) = θ(ω), respectively.

Identifying the parameters of the transfer function (b0 . . .bm, and
a0 . . .an) is a challenging process. The unit step response is a
powerful tool to identify such transfer functions. The step re-
sponse can help to predict model order and damping of the un-
known system. Figure 5 shows that a step change from an initial
state to a new state indicates an over damped system. To model
the magnitude of generated wave over the range of frequencies
a bode plot is generated to better understand the data, shown in
Figure 10. Here the magnitude is presented in terms of decibels,
20 log10

(
λ (ω)

Γ

)
. Typical system identification methods may be
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used to model the frequency domain data. In particular, the pre-
diction error method gives a nice iterative scheme to solve for the
transfer function G(s). The cost function is minimized in a mean
square sense, such that

JN(B,A) = ∑e2(t),

where the error is defined as

e(t) = y(t)− ŷ(t) = y(t)−A−1(q)B(q)u(t),

given a parameter structure for the numerator and denominator
for the difference equation. The model output and simulated Airy
wave data are shown in Figure 10. The specific identified model
is,

G(s)=
0.0022s4−0.1962s3 +0.0060s2−0.1330s+0.0062

s5 +0.0077s4 +0.4775s3−0.0011s2−0.1141s+0.0066

Note, these are only initial model identification attempts; further
iteration needs to be done on model order and parameter selec-
tion. Nonetheless a linear, fifth order model does represent the
steady state simulation data well.
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FIGURE 10. Frequency vs magnitude plot of simulated steady state
data (red). Fifth order Prediction Error Method model.

The developed linear model can then be utilized for con-
trol development. Typical control design methods such as:
loop shaping techniques, PID, H∞, model predictive control, µ-
synthesis, etc. may be used to control the rotational frequency
and circulation (equivalently Angle of Attack) to produce a de-
sired wave height and frequency. This control effort will even-
tually be invoked to cancel completely unknown periodic waves.
Also, it is shown by Figure 7 that a non-linear relation between
submergence depth and generated wave height exist. A series of
linear models at each operating point (submergence depth) will
need to be employed to span the entire parameter space.

DISCUSSION AND SUMMARY
The results of this research show that cancellation of all or

part of incoming non-harmonic waves is possible by using a cy-
cloidal turbine as a wave generator. The generation of the ‘anti’
wave (of matching amplitude and out of phase by 180◦) neces-
sary for cancellation requires knowledge of the incoming wave
amplitude and phase. For incoming periodic waves which match
the characteristics of waves the cycloidal turbine can produce,
near complete cancellation is possible as was shown for the in-
verse problem. The ability of the cycloidal turbine to generate
sinusoidal waves is very useful in cancelling wave components
of multi-component wave systems. Through superposition of the
generated wave with the incoming wave, a desired wave compo-
nent can be cancelled.

We next considered wave generation in response to step
changes in the cycloidal turbine operating parameters. This was
done to gain insight to the response characteristics of the device
to changes in the incoming waves. A consistent result in all the
step change runs was a transient time of approximately 4 to 6
periods. This result holds over the range of periods from 6 to
13 seconds which we considered and regardless of whether the
change occurred at startup or after a steady state was achieved.
A possible explanation for this transient time is simply that this
number of periods is required to produce a periodic wave. If we
consider the step change to a cycloidal turbine parameter as a dis-
turbance to the flow, one can expect a multitude of waves to be
generated. After a couple rotations following the step change all
the generated waves not in sync to the rotation period cancel out
leaving only the propagating periodic wave. Observational evi-
dence of wavemakers support this notion that steady wavetrains
require several periods to develop. A logical conclusion that can
be drawn is that this places a lower limit to achieve a new steady
state for a control algorithm responding to changes in the incom-
ing waves.

Results were also presented for the generated wave response
to step changes in the cycloidal turbine parameters of circulation
strength, period, and submergence. These step change investiga-
tions give insight to how the cycloidal turbine parameters need to
be changed in response to changing incoming wave conditions.
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Both the circulation strength and submergence parameters can
be used to change the generated wave amplitude to match that of
the incoming wave. In the case of circulation strength there is a
linear relationship to the steady state wave amplitude, while the
relationship is non-linear for submergence. For both cases a tran-
sient time of approximately four periods follow the step change
before the generated wave returns to steady state. The period of
the generated wave can also be changed by changing the rota-
tion rate of the cycloidal turbine. Once again a new steady state
wave followed a transient time of approximately four periods. In
the step change runs to change period, the resulting steady state
amplitude also changed. This dependence of amplitude on the
rotation rate of the cycloidal turbine is a function of device ra-
dius and submergence depth.

Utilizing the study results, an initial model for the steady
state frequency response of the cycloidal turbine was developed.
This was chosen as a linear time invarient model. The step
change results helped to predict model order and damping for
this system. This model will be utilized for control development
in future efforts involving wave estimation and feedback con-
trol. Wave estimation and feedback control algorithms will be
essential to operate the cycloidal turbine in the ocean. The step
change studies suggest a comprehensive database of wave char-
acteristics in response to changes in cycloidal turbine parameters
will need to be created. These recent and past parameter studies
of cycloidal turbine radius and submergence show non-linear re-
lationships to the generated wave amplitude. Likewise the steady
state generated wave amplitude is a non-linear function of wave
generation period. Thus, further test runs will be needed to create
a comprehensive database and an algorithm must be developed to
determine the best parameters to cancel irregular waves.

In addition to the above tasks for constructing the feedback
control algorithm, future work will address issues regarding the
device efficiency in irregular waves encountered in the ocean. To
explore this, test runs will need to be conducted to determine
how effective the feedback control algorithm is in cancelling the
irregular waves. Both the accuracy of the wave estimation and
performance of the control algorithm will influence this effec-
tiveness. The transients described in the step change runs like-
wise will affect the effectiveness of wave cancellation and this
shortcoming in terms of generating the correct ‘anti’ will need
further investigation. Similarly, the energy that can be extracted
from irregular waves will also be studied in future work. With the
algorithm controlling the blade pitch angle, device rotation rate,
and device submergence in response to changing incoming wave
data the flow field at the blade will be continually changing. By
knowing the flow field and blade velocities a force and moment
analysis can be conducted to determine how much power can be
taken by the cycloidal turbine. Using this approach a parame-
ter study of power generation based on the incoming sea state
and device parameters such as radius can be conducted. This
will help us understand the energy extraction abilities of the cy-

cloidal turbine in addition to the wave cancellation capabilities.
Lastly, analysis to include the diffraction due to the disturbance
caused by the presence of the device shall be conducted. For the
current work, diffraction has been assumed negligible due to the
size of the blades relative to the wavelengths considered. This is
considered valid because while the blades rotate in large orbits
the volume occupied by the device is small. A diffraction code
analysis can determine the accuracy of this assumption.
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